Equipment review: Tracheal gas insufflation
نویسنده
چکیده
47cc-2-2-043 Introduction Tracheal gas insufflation (TGI) is an adjunctive ventilatory technique that delivers fresh gas into the trachea either continuosly or only during a specific segment of the respiratory cycle (phasic flow) [1-4]. Two mechanisms are responsible for improving the efficacy of conventional tidal breaths during TGI [5-7]. First, fresh gas introduced by the catheter during expiration flushes the series (anatomic) deadspace compartment proximal to its tip free of CO2. Consequently, during the subsequent inspiration, less CO2 is recycled back to the alveoli thus improving CO2 elimination. Second, at high catheter flow rates, turbulence generated at the tip of the catheter can enhance gas mixing in regions distal to the catheter tip, thereby contributing to CO2 removal. Carbon dioxide elimination during TGI depends on catheter flow rate because fresh gas flushes a greater portion of the proximal deadspace at higher flow rates. Moreover, at higher flow rates, turbulence generated at the catheter tip may further enhance distal gas mixing. The volume of fresh gas introduced into the trachea during TGI depends on expiratory time (TE) and catheter flow rate (Vc). At a certain TE × Vc, fresh gas completely sweeps the proximal anatomic deadspace during expiration. At that point, increasing Vc most likely does not dilute the CO2 residing in the series deadspace any further. This operational charactertistic of TGI, and the fact that the decrease in the partial pressure of CO2 (PaCO2) caused by a reduction in total physiologic deadspace fraction (VD/VT) is much less at lower VD/ VT, limits the decrement in PaCO2 afforded by TGI at high Vc [8]. Nevertheless, at high Vc (< 10–15 1/min) PaCO2 continues to decrease with increasing Vc, but at a slower rate [8-10]. Once the series deadspace is flushed completely by the fresh gas during expiration, the flow dependence of PaCO2 is thought to be secondary to enhanced turbulent mixing in the airways distal to the catheter tip [5,11,12]. TGI is unlikely to be very effective when the alveolar as opposed to the series compartment dominates the total physiologic deadspace; yet, at small tidal volumes (whenever series deadspace is especially high) or when alveolar ventilation is very low. TGI should be a helpful adjunct to conventional mechanical ventilation (CMV) [8].
منابع مشابه
Tracheal gas insufflation and related techniques to introduce gas flow into the trachea.
Over the past 50 years, a variety of techniques have been developed that have in common the insufflation of gas into the central airway to facilitate carbon dioxide (CO2) clearance. These include continuous insufflation of oxygen, transtracheal jet ventilation, high frequency jet ventilation, transtracheal oxygen administration, intratracheal pulmonary ventilation, and tracheal gas insufflation...
متن کاملMonitoring and humidification during tracheal gas insufflation.
In order to use tracheal gas insufflation (TGI) in a safe and effective manner, it is important to understand potential interactions between TGI and the mechanical ventilator that may impact upon gas delivery and carbon dioxide (CO2) elimination. Furthermore, potentially serious complications secondary to insufflation of cool, dry gas directly into the airway and the possibility of tube occlusi...
متن کاملEffect of tracheal gas insufflation during weaning from prolonged mechanical ventilation: a preliminary study.
BACKGROUND Tracheal gas insufflation reduces inspired tidal volume and minute ventilation in spontaneously breathing patients and may facilitate weaning from mechanical ventilation. OBJECTIVE To determine if tracheal gas insufflation can reduce ventilatory demand during weaning trials in patients who require prolonged mechanical ventilation. METHODS A reduction in ventilatory demand was def...
متن کاملDistal projection of insufflated gas during tracheal gas insufflation.
Tracheal gas insufflation (TGI) flushes expired gas from the ventilator circuitry and central airways, augmenting CO2 clearance. Whereas a significant portion of this washout effect may occur distal to the injection orifice, the penetration and mixing behavior of TGI gas has not been studied experimentally. We examined the behavior of 100% oxygen TGI injected at set flow rates of 1-20 l/min int...
متن کاملHigh-frequency oscillatory ventilation with tracheal gas insufflation: the rescue strategy for brain-lung interaction
The occurrence of moderate to severe acute respiratory distress syndrome due to traumatic brain injury is not uncommon and is associated with an extremely high incidence of morbidity and mortality. Owing to the complex interaction between the lung and brain, protective ventilation for the lung with lower tidal volume and higher positive end-expiratory pressure with or without mild hypercapnia m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical Care
دوره 2 شماره
صفحات -
تاریخ انتشار 1998